64435 Breccia with glass coat 1079 grams Figure 1: Photo of 64435. Cube is 1 cm. NASA S72-39674. Note the lack of any micrometeorite craters (see flip side, figure 2). #### **Introduction** 64435 has a thick shiny black glass coat on one side (figure 1) and numerous micrometeorite pits on the other (figure 2) as if it had once been an impact bomb that had it glass coat eroded away on the unprotected side. 64435 is an oriented lunar sample that has been studied for cosmic ray induced activity. It contains clasts of plutonic igneous rocks (ferroan anorthosite clan) with "inverted" pigeonite. ## **Petrography** The majority of 64435 is a fine-grained grey impact melt that has not been described. It is found to be very aluminous in composition ($Al_2O_3 = \sim 31\%$). Ryder and Norman (1980) noted that the plagioclase microlites in the matrix were often in alignment, as if by flow (figure 3). James and Flohr (1985abs) and James et al. (1989) studied a large (5x2x1 cm) coarse-grained white composite clast (CTA-A-FTA) made up of coarse troctolitic anorthosite and fine troctolitic anorthosite (see below). Figure 2: Flip side of 64435 (see figure 1). NASA S72-39676. Cube is 1 cm. Note the abundant micrometeorite craters. Additional data can be found in notes by Brian Mason (unpublished), Kempa and James (1982abs), Lindstrom (1984abs), James (1987abs) and the catalog by Ryder and Norman (1980). #### **Significant Clasts** *Troctolitic Anorthosite*, 239: This clast (figures 9 and 10) is coarse grained (1-4 mm) consisting of ~81% plagioclase (An_{97}) , 15% olivine $(Fo_{71.5})$, 2-3% orthopyroxene $(Wo_{1.5}En_{74.5})$ and 1% augite $(Wo_{45}En_{45})$ (James et al. 1989). Noteworthy is that the pyroxene in this clast has the texture of "inverted pigeonite" indicating a slow cooling of the igneous body – as in a pluton! **Anorthosite** ,210A: Clast (,210A) is about 98% plagioclase (An_{98}), 1% orthopyroxene (Wo_2En_{56}) and 1% augite ($Wo_{44}En_{39}$). Plagioclase is shocked (James et al. 1989). *Fine-grained Troctolitic Anorthosite*, 207: James et al. (1989) found that the area surrounding the coarse grained clasts (above) was a fine-grained granulite with the mineralogy of a troctolitic anorthosite. It is composed of about 88% plagioclase ($An_{97.8}$) and 12% mafic minerals (olivine $Fo_{70.6}$ and pyroxene ($Wo_{1.5}En_{72-75}$ and $Wo_{45}En_{45}$). Figure 3: Photomicrographs of thin section 64435,5 (plane polarized and cross polarized) showing microlites of feldspar and mineral clasts in glassy matrix). Field of view about 3 mm. NASA S72-45704 and 45691. **Anorthosite:** Laul and Schmitt (1974) provide an analysis – may be same as composite clast studied by James et al. (above). # **Mineralogy** Olivine: Olivine is very "mafic" (Fo₇₂). **Pyroxene:** The composition of pyroxene in the portions of the composite white clast are replotted in figure 4. Noteworthy is the presence of inverted pigeonite (figure 2c in James et al. 1989). Figure 4: Olivine and pyroxene composition of composite clast in 64435,152 (from James et al. 1989). **Plagioclase:** All of the plagioclase in 64435 is very calcic (An_{96-98}). The plagioclase is highly shocked. *Opaques:* James et al. (1989) determined the composition of ilmenite and chromite. Glass: See et al. (1986) and Morris et al. (1986) included 64435 in their study of "large glass objects". *Metallic Iron:* Hewins and Goldstein (1975) reported the Ni and Co in metal grains. #### Chemistry Taylor et al. (1974abs), Laul and Schmitt (1974abs) and Hubbard et al. (1974) determined the chemical composition of the melt rock (figure 6). The anorthosite clast studied by Laul and Schmitt (1974) may be the same as the composite clast studied by James et al. (1989). The composition of the shiny black glass coat (figure 1) has been measured by Morris et al. (1986), See et al. (1986), Laul and Schmitt (1974) and Ebihara et al. (1992). The average compositions of the three portions of the composite white clast that was carefully studied by James et al. (1989) are summarized in table 1 and figure 6 (see their paper for specific details). The portions of the white clast are all related to ferroan anorthosite (figure 5). #### Radiogenic age dating 64435 has not been dated, but Nunes et al. (1974, 1977) and Rosholt (1974) have determined the U, Th and Pb Figure 5: Composition of plagioclase and pyroxene in clasts in 64435,152 (from James et al. 1989). isotopic composition. Reimold et al. (1985) have studied the Rb-Sr system for a group of "impact melt rocks" from Apollo 16 (figure 7). What is badly needed, is an ⁴⁰Ar/³⁹Ar plateau age for the melt rock portion of this rock! Predictably, the age of the clasts will have been reset. Figure 7: Whole rock Rb/Sr isochron for impact melt rocks Apollo 16 - defining a line with the slope of 3.69 +/- 0.16 m.y. (from Reimold et al. 1984). However, this age is meaningless! # Cosmogenic isotopes and exposure ages Fruchter et al. (1978) determined the cosmic-ray-induced activity of ²⁶Al and ⁵³Mn for an interior shielded chip and calculated exposure ages 1.3 and 1.7 m.y. Bogard and Gibson (1975) calculated the exposure age as 0.6 and 0.7 m.y. from ²¹Ne and ³⁸Ar data by Bogard et al. (1973). Bhandari (1977) calculates 0.5 m.y. from ²⁶Al data (Bhandari et al. 1976). Figure 6: Normalized rare-earth-element diagram for matrix, glass coat and white clasts in 64435. Table 1. Chemical composition of 64435. | ,239 ,210A ,207 |--|---|--|---------------------------------|------------|--|--------------------------|---------------------|---------------------------|------------------------------|--------------------|--|------------|--------------------|---------------|----------------------|-------------------|----------------------|-------------------| | reference
weight
SiO2 %
TiO2
Al2O3
FeO
MnO | Taylor7
matrix | (d)
(d)
(d) | Hubbar
matrix | d74 | matrix
44.55
0.19
30.25
3.42
0.05 | (e)
(e)
(e)
(e) | Laul 74
matrix | | anor. | (a) | Morris 86
glass
45.41
0.38
24.43
6.85 | | Ebihara92
glass | | ,239
James
ave | | ,20 <i>7</i>
ave | | | | 44.5 | | | | | | 0.04 | 0.5
24.5
8
0.105 | 0.1
35.5
0.61
0.011 | | | | | | clast
26.5 | clast | clast
29.8 | (0) | | | 30.8
3.13 | | | | | | | | | | | | | | 5.17 | 0.212 | 3.44 | (a)
(a) | | MgO
CaO
Na2O | 3.38
17.4
0.39 | (d)
(d)
(d) | | | 3.83
17.16 | (e)
(e) | 3
17
0.34 | 8
13.3
0.55 | 19
0.29 | | 9.4
13.5
0.53 | | | | 8.3
15.2
0.274 | 19.3
0.299 | 4.6
16.8
0.275 | (a)
(a)
(a) | | K2O
P2O5
S %
sum | 0.02 | | 0.026 | (b) | 0.03
0.03 | (e)
(e) | 0.024 | 0.086 | 0.025 | | 0.12 | | | | 0.02 | 0.200 | 0.02 | (a) | | Sc ppm
V | 7
22 | (d)
(d) | 498 | (b) | | | 5.2
15 | 6.9
20 | 0.9
4 | (a)
(a) | 7.7 | (a) | | | 3.67 | 0.433 | 4.3 | (a) | | Cr
Co
Ni | 56 | (d)
(d)
(d) | | | | 438
7 | 1163
100
1800 | 5.7
1.3 | (a)
(a) | 1194
80
1508 | (a)
(a) | | (0.) | 494
13.5 | 12.9
0.332
<3 | 340
7.04
16 | (a)
(a) | | | Cu
Zn | | | | | | | | 1000 | | (a) | 1500 | (a) | 2220
11.2 | (c) | 33 | \ 3 | 10 | (a) | | Ga
Ge ppb
As | | | | | | | | | | | | | 1800 | (c) | | | | | | Se
Rb
Sr | 0.39 | (d) | 0.638 | (b) | Reimo
2.24
146 | (b)
(b) | | | | | | | 1750
2.68 | (c) | 120 | 160 | 150 | (a) | | Y
Zr | 4.53
17 | (d) | 11.2 | (h) | | | | 100 | | (0) | | | | | | | | | | Nb
Mo | 1.38 | (d) | 11.2 | (b) | | | | 100 | | (a) | | | | | | | | | | Ru
Rh | Pd ppb
Ag ppb | | | | | | | | | | | | | 76.8
12.1 | (c) | | | | | | Cd ppb
In ppb | | | | | | | | | | | | | 71
101 | (c) | | | | | | Sn ppb
Sb ppb
Te ppb | | | | | | | | | | | | | 5.6
68.3 | (c) | | | | | | Cs ppm
Ba | 0.02
28
1.54
3.99
0.47
1.95
0.53
0.68
0.72
0.13
0.8 | (d)
(d)
(d)
(d)
(d)
(d)
(d)
(d) | 21.1
1.32
4.06 | (b) | | | 20 | 90 | 9 | (a) | 141 | (a) | 108 | | 0.032
8 | 0.045
6 | 0.049
9 | (a)
(a) | | La
Ce
Pr | | | | (b) | | 1.5
4 | 9.6
24 | 0.16 | | 11
25.6 | (a)
(a) | 19.5 | (c) | 0.336
0.81 | 0.129
0.259 | 0.392
1.13 | (a)
(a) | | | Nd
Sm | | | 2.35
0.691
0.759
0.842 | (b)
(b) | | | 3
0.7 | 15
4.3 | 0.4
0.086 | | 4.59 | (a) | | (c) | 0.146 | 0.0402 | 0.157 | (a) | | Eu
Gd
Tb | | | | (b) | | | 0.76 | 0.91 | 0.69 | (a) | 1.07 | | 2.902
0.86 | | 0.681 | 0.698 | 0.716 | (a) | | Dy
Ho | | | 1.03 | (b) | | | 0.8 | 5.1 | 0.03 | (a)
(a) | 1.07 | (a) | 0.00 | (0) | 0.036 | 0.0099 | 0.042 | (a) | | Er
Tm | 0.53
0.087 | | 0.66 | (b) |) | | | | | | | | | | | | | | | Yb
Lu | 0.087
0.53
0.082 | (d) | 0.611
0.095 | (b)
(b) | 1. 1 | | 0.58
0.082 | 2.8
0.43 | 0.06
0.008 | | 3.53
0.44 | | 2.96
0.408 | | 0.158
0.028 | 0.0258
0.0026 | 0.189
0.032 | (a)
(a) | | Hf
Ta | 0.52 | (d) | 0.000 | (~) | | | 0.41
0.07 | 3.2
0.35 | 0.03
0.02 | (a) | 3.27
0.45 | (a)
(a) | | (0) | 0.063
0.014 | 0.0064
0.004 | 0.125
0.019 | (a)
(a) | | W ppb
Re ppb | | | | | | | | | | | | | 5.82 | (c) | | | | | | Os ppb
Ir ppb
Pt ppb
Au ppb
Th ppm | | | 0.218 | | | | | 50 | | (a) | | | 62.9
57.2 | (c) | | | | | | | 0.23 | (d) | | (b) | | | 0.25 | 30
1.1 | | (a)
(a) | 2.84 | (a) | 21.9 | (c) | | | | | | U ppm
technique: | 0.12 | (d) | 0.062 | (b) | RNAA, | (d) s | 0.1
ssms, (e | 0.4
) <i>XRF</i> | 0.02 | | 0.35 | | 0.372 | (c) | | | | | Figure 8: Group photo of first slab 64435. NASA S73-17790. Cubes are 1 cm. Figure 9: Photo of first slab cut from 64435 showing coarse troctolitic anorthosite ,239 and anorthosite ,210A clasts (near cube). Also see same clasts on opposite face of ,152 (figure 10). Cube is 1 cm. Figure 10: Photo of 2nd slab cut from 64435,11. NASA S83-40347. ## **Other Studies** Charette and Adams (1977) Huffman et al. (1974) Huffman and Dunmyre (1975) Nagata et al. (1974) Cisowski et al. (1976) Schwerer and Nagata (1976) Gibson and Moore (1975) Gibsone and Andrawes (1978) Bogard et al. (1973) Bhandari et al. (1976) Moore et al. (1973) Gripe and Moore (1974) Moore and Lewis (1976) spectra Mossbauer Mossbauer magnetics magnetics magnetics gas release nitrogen, methane rare gas content tracks, crater counts C # **Processing** Two adjacent slabs have been cut from 64435: one in 1973 and the second in 1983. Portions of the first slab were to be studied by a consortium led by Brian Mason (results published in Ryder and Norman 1980). The second slab included the large white composite clast (,152 CTA-A-FTA) studied in detail by James et al. (1989), but portions of this large clast also outcrop on ,15 and ,11.